免费课程 在线实验 就业课程 会员免费课

/ 注册

新用户注册赠送7天免费会员

没有解决您的问题?扫描二维码加入博睿云交流群畅所欲言吧!
使用帮助

全部课程> 自然语言处理

自然语言处理

¥ 199.00
¥ 400.00
  • 54课时(建议每周学习48小时)
  • 机器学习、深度学习
  • 自主模式
1、新课优惠,立省201.00元
2、成为会员可免费学习本课程
会员限免

已有1812人报名学习

加入购物车
  • 课程概览
  • 授课讲师
  • 课程大纲
  • 实验列表
    自然语言处理
  • 课程概览
  • 授课讲师
  • 课程大纲
  • 实验列表
加入购物车

自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。

课程概览
一、课程简介
本课程以自然语言算法为主体,讲解各种自然语言处理网络。在讲解网络过程中,以实际的例子和可视化的方式形象理解。部分算法会讲解实际算法推导。在讲解完每个网络后,都会用keras解决一个具体的问题。可以强化对算法的理解。

二、课程目标

掌握自然语言处理基本属于
理解词向量技术
掌握CNN、RNN网络
掌握Seq2Seq架构
掌握Transformer架构


第一阶段:自然语言处理基础
     在该阶段,主要学习基本术语、基础知识、词向量等内容

第二阶段:情感分析
    在该阶段,主要学习自然语言处理中常用网络,包括CNN、RNN、LSTM等。

第三阶段:序列到序列
    在该阶段,主要学习Seq2Seq架构以及Transformer架构。
授课讲师

黄晓杰

华为授业名师、华为双IE(云计算、云服务)、高校客座教授,撰写技术文章《云上主机安全设计》成功入选华为专家有料,阅读量1700次;每年培养华为认证人才250多人次,去年通过认证的学生量HCIA131人、HCIP85人、HCIE20人;具有着独特的教学风格,讲课深入浅出、通俗易懂,能与学生打成一片。课后经常与学生一起讨论问题,学员评价杰哥的课生动有趣,他们对技术的兴趣和热情也越来越高。

课程大纲
  • 第1章自然语言处理
  •     第1节 自然语言处理基础知识 试听
    视频名称:01_自然语言的基础知识.mp4
  •     第2节 自然语言处理的应用 试听
    视频名称:02_自然语言处理的应用.mp4
  •     第3节 自然语言处理相关模块
  •     第4节 文本预处理
  • 第2章词向量
  •     第1节 同义词词典
  •     第2节 基于计数的词向量
  •     第3节 CBOW和Skip-Gram网络
  •     第4节 训练词向量
  •     第5节 加载Golve
  •     第6节 词向量的可视化
  • 第3章卷积神经网络
  •     第1节 语义理解
  •     第2节 卷积神经网络
  •     第3节 数据处理
  •     第4节 CNN文本情感分析
  • 第4章循环神经网络RNN
  •     第1节 概率和语言模型
  •     第2节 RNN
  •     第3节 时序数据处理
  •     第4节 RNN文本情感分析
  • 第5章带有门的的RNN
  •     第1节 RNN存在的问题
  •     第2节 LSTM和GRU
  •     第3节 双向RNN
  •     第4节 LSTM文本情感分析
  • 第6章Seq2Seq模型
  •     第1节 编码-解码架构
  •     第2节 数据处理
  •     第3节 编码器的实现
  •     第4节 解码器的实现
  •     第5节 组装Seq2Seq网络
  •     第6节 使用Seq2Seq网络
  •     第7节 注意力机制
  • 第7章基于预训练网络模型
  •     第1节 Self-Attention
  •     第2节 Bert详细介绍
  •     第3节 基于Bert的文本情感分析
  •     第4节 Transformer架构
实验列表
  • 实验名称词向量训练
  • 实验描述神经网络在处理文本时,需要将文本转换成向量的形式。这种向量可以是词袋模型、也可以是OneHot编码,或者词向量。相比之下词向量是一个更优的选择。为了更好地使用词向量,会将词向量嵌入到Embedding层,本次实验将完成词向量的训练以及嵌入操作。
  • 实验名称情感分析
  • 实验描述文本分类是自然语言处理的一大基本任务,文本分类可以应用到文本情感分析上。而文本分类实现方式有很多种,可以用全连接、CNN、RNN等。本实验使用CNN作为分类网络,实现文本情感分析。
  • 实验名称机器翻译
  • 实验描述机器翻译是自然语言处理的一大任务,现在传统的机器翻译已经被基于深度学习的机器翻译取代。机器翻译可以简化成序列到序列的问题,在自然语言处理中有一类专门处理序列到序列的模型叫做seq2seq模型。本实验使用RNN作为网络基础,实现seq2seq网络模型,完成机器翻译任务。
  • 实验名称Bert情感分析
  • 实验描述Bert作为一个大型的预训练模型,可以迁移到许多其它任务上。文本分类、文本生成等。本实验使用Google预训练的Bert模型,对文本分类任务进行微调,实现文本情感分析。
节数上课时间星期一 星期二星期三星期四 星期五星期六星期天
第1节08:00 - 08:40
第2节09:00 - 09:40
第3节10:00 - 10:40
第4节11:00 - 11:40
第5节14:00 - 14:40
第6节15:00 - 15:40
第7节16:00 - 16:40
第8节17:00 - 17:40
天数上课日期上课时间内容
相关课件 更多
  • pptx

    第1章 自然语言处理

    大小:1.17MB

    2023-08-04

  • pptx

    第2章 词向量

    大小:1.77MB

    2023-08-04

  • pptx

    第3章 卷积神经网络

    大小:2.42MB

    2023-08-04

  • pptx

    第4章 循环神经网络

    大小:1.04MB

    2023-08-04

  • pptx

    第5章 带有门的RNN

    大小:2.43MB

    2023-08-04

  • pptx

    第6章 seq2seq模型

    大小:1.99MB

    2023-08-04


课程名称:
自然语言处理
课程原价:
40000
课程现价:
199
支付方式:
支付宝支付
微信支付
确认支付
支付剩余时间: 15:00
视频试听